Земное тело на своем месте

Земное тело на своем месте

В стране и миреНаука и техника
В отличие от Луны, Земля никогда не была расплавленной и даже особенно не перегревалась

Если наблюдать за эволюцией солнечной системы от ее периферии, то можно было бы заметить, как допланетный диск вокруг солнца постепенно становится все более и более разреженным из-за того, что формирующиеся планеты отбирают у него материю. И только на самой окраине системы диск остается по-прежнему плотным. Фото: NASA/JPL-Caltech

Извечный вопрос о началах и до сих пор является ключевым для многих наук, не говоря уже о философии. В случае с астрофизикой, астрономией, геологией от ответа на вопрос о происхождении Земли, планет, звезд, Солнца и Солнечной системы, галактик или всей Вселенной в целом зависит построение всех прочих теорий. Вопрос о возникновении и эволюции Земли одновременно и древний, и современный. Здесь никак не получится ограничиться ответом «вначале было Слово»; доказательства же или опровержения теорий о происхождении появились относительно недавно — в частности, когда были подвергнуты химическому анализу образцы метеоритов, попавших на Землю, и когда удалось увидеть в мощные телескопы газопылевые туманности других звезд.

Происхождение Солнца, Земли и других планет Солнечной системы, с одной стороны, заставляет предположить, что наш «случай» не уникален: во Вселенной есть множество звезд, в том числе и спектрального класса G, вокруг которых из газопылевых туманностей вполне могут образоваться планеты. Последние открытия, касающиеся экзопланет (среди особенно вдохновляющих — открытие планет, похожих на Землю, вокруг звезды Глизе 581, и обнаружение органических соединений на HD 189733b), показывают, что условия, схожие с земными, могут появиться и на других участках Вселенной. Однако для создания схожих условий требуется множество совпадений, а некоторые особенности Солнечной системы и её истории вряд ли можно назвать типическими и закономерными. Например, для того, чтобы на планете успела зародиться и эволюционировать жизнь, материнская звезда должна быть относительно спокойной и не слишком большой — жизнь крупных звезд гораздо короче, чем средних. Планета, подобная Земле, должна находиться в зоне возможной жизни своей звезды (Habitable zone) — то есть там, где её среднегодовая температура будет около нуля градусов, что даст возможность существованию воды в жидком виде. Орбита её, как и орбиты всех остальных планет системы, должна быть близкой к окружности — кстати сказать, малая величина эксцентриситета орибиты — скорее исключение, чем правило. Предпочтительно, чтобы планета не была обращена к материнской звезде лишь одной стороной, что вызывает чрезмерный перегрев одной стороны и охлаждение другой, а следовательно, сильнейшие ветры — как это вполне может происходить на «близнеце» Земли у звезды Глизе 581. 

В плане создания благоприятных для жизни условий происхождение и эволюция Солнечной системы уникальны. Исследуя другие планетные системы, находящиеся на разных этапах своего развития, несложно выявить немало особенностей её генезиса.

Планета, движущаяся в допланетном диске, немного напоминает пылесос, собирая пыль частично на своей поверхности, частично — в кольцах подобных кольцам Сатурна. Фото: NASA/JPL-Caltech

В настоящее время большинство ученых, занимающихся вопросами происхождения Солнечной системы и, в частности, Земли, то есть космогонией, придерживаются теории, созданной Отто Юльевичем Шмидтом (1891–1956) в 1950-е годы и модифицированной его последователями. В соответствии с ней планеты и другие тела образовались в газово-пылевом протопланетном облаке, имевшем форму диска и вращавшемся вокруг Солнца. Если во времена Шмидта газово-пылевой диск был не более чем гипотезой, в последние десятилетия такие диски открыты у многих молодых звезд типа τ Тельца, и у некоторых звезд главной последовательности. Так, согласно недавним наблюдениям американских ученых Калифорнийского университета в Лос-Анджелесе, на орбитах звезд в скоплении Плеяд как раз сейчас может идти процесс образования планет из такого облака. Например, вокруг звезды HD23514 обращается в сотни тысяч раз больше пыли, нежели вокруг Солнца.

Правда, вызывает разногласия происхождение такой туманности: со времен Канта (Immanuel Kant, 1724–1804) и Лапласа (Pierre-Simon, marquis de Laplace, 1749–1827) считалось, что Солнце и планеты были образованы из одного и того же облака. Однако различный их состав, а главное, несоответствие массы Солнца и планет и количества их движения противоречит такой гипотезе. Шмидт выдвинул «гипотезу захвата», согласно которой Солнце «ворует» вещество для протопланетного облака во время встречи с галактической темной туманностью, состоящей из пыли или метеоритов. 

Но открытия второй половины ХХ века заставили уточнить эту гипотезу. По самым последним данным, Солнечная система появилась в результате воздействия звёздного ветра, исходящего от массивной звезды, а, например, не от газопылевого облака взорвавшейся соседней сверхновой. На таком выводе настаивает Мартин Бидзарро (Martin Bizzarro) из университета Копенгагена (University of Copenhagen) после проведения анализа изотопного состава нескольких метеоритов (в частности, содержания в них железа-60 и алюминия-26), образовавшихся в разные периоды формирования нашей системы. 

По образовавшемуся протопланетному диску бегут звуковые волны — это следующий этап эволюции Солнечной системы. Из-за них в диске возникают сгущения, постепенно они уплотняются и превращаются в рой твердых тел — планетезималей, которые впоследствии послужили строительным материалом для планет. Самые крупные планетезимали становились их «зародышами». Система формировалась довольно быстро, причем из-за особенностей гравитационного взаимодействия скорость формирования планет почти не зависела от расстояния до Солнца: близкая к нему Земля нарастила 98% своей массы за 108 лет, а более удаленные Уран и Нептун — за 109.

Столкновение двух планет повлекло бы за собой образование большого количества пыли и мелких космических тел. Некоторое время тому назад считалось, что именно подобное событие повлекло гибель планеты Фаэтон между Землей и Марсом. Теперь, однако, более обоснованной считается противоположная версия: мелкие обломки и пыль — следы так и не сформировавшейся планеты, а не разрушившейся. Фото: Lynette Cook for Gemini Observatory

Эволюция гигантских Юпитера и Сатурна, содержащих в себе 82% массы всех планет, отличается от остальных: скорее всего, их рост шел в два этапа. Сначала шла аккумуляция ядер планет из твердых частиц — как у планет земной группы, а затем аккреция (присоединение) газа. Юпитер рос довольно быстро — 107 лет — он успел быстро поглотить газы из допланетного диска до того, как ультрафиолетовое и корпускулярное излучение Солнца рассеяло их в пространстве. Кроме того, как раз на расстоянии орбиты Юпитера (5,2 а.е.) в диске находился фронт конденсации водяного льда — именно из-за конденсации льдов воды и других летучих веществ рост планетезималей в районе Юпитера мог опережать рост более близких к Солнцу тел. 

С быстрым ростом крупного Юпитера связана ещё одна любопытная особенность. Как известно, между орбитами Марса и Юпитера расположено много астероидов и других небольших тел, обращающихся вокруг Солнца на том расстоянии, где должна была бы находиться большая планета, согласно правилу Тициуса-Боде. Эти факты привели к появлению гипотезе о Фаэтоне — планете, якобы существовавшей между Юпитером и Марсом и разрушенной в результате столкновения с неким астрономическим телом или от гравитационного воздействия самого Юпитера. Гипотеза эта, однако, не только не подтвердилась, но была заменена на обратную: не планета была раздроблена гравитационным полем Юпитера, а, наоборот, астероиды не смогли сформироваться в единую планету (сам Шмидт писал об этом ещё в 1954 году). Формированию препятствовали возмущения Юпитера и других крупных тел из зоны питания, а также увеличение хаотических скоростей планетезималей, которые, залетая в зону астероидов и будучи крупнее последних, выталкивали их и создавали возмущения, тем самым замедляя их рост. 

Возвращаясь к Земле, надо заметить, что её рост (как и рост остальных планет земной группы) в основном проходил уже при отсутствии газа протопланетного облака, а атмосфера и гидросфера выделялись при дегазации первоначально твердых планетезималей, которые попадали на нее с периферии Солнечной системы. 

Многолетние геологические исследования показывают: Земля никак не могла образоваться из раскаленного газового сгустка и никогда не была расплавленной. В своей «юности» она, сформировавшись из холодных планетезималей, была холодной. Один из современных последователей Шмидта астрогеофизик Виктор Сергеевич Сафронов (1917–1999) привел доказательства тому, что она также была однородной по составу и тектонически пассивной планетой. Изучение дальнейшей истории Земли как астрономического тела тесно связано, как ни странно на первый взгляд, с изучением её геологии и геохимии. 

Сафронов утверждал, что впервые плавление земных недр на уровне верхней мантии произошло под влиянием лунных приливов и распада радиоактивных элементов только через 600 млн. лет после образования Земли. Более того, этот момент он связывает с началом базальтового магматизма на Луне около 4 млрд. лет назад и появлением наидревнейших пород земной коры около 3,8 млрд. лет назад. Тогда же началось и разделение земного вещества по плотности; выделялось железо и его оксиды, образовавшие позже земное ядро. Ядро обособилось только в самом конце архея (около 2,6 млрд. лет назад), но процесс выделения земного ядра продолжается и в настоящее время.

Раскаленные породы в земных недрах образуются в результате процессов, идущих в ее недрах. Несмотря на это Земля как целое никогда не была расплавленной. Фото: NASA/JPL

Нагревание Земли происходило не в последнюю очередь и из-за ударов крупных планетезималей, энергия которых частично накапливалась на глубине ударных кратеров, а также от тепла радиоактивных источников и сжатия недр под давлением вышележащих слоев. 

Эволюцию Земли невозможно рассматривать без её спутника — Луны. Существует несколько гипотез возникновения и эволюции Луны — в частности, гипотеза мегаимпакта, согласно которой околоземный диск образовался при столкновении Земли с крупным допланетным телом, в 1,5–2 раза более массивным, чем Марс. 

Согласно другой теории, Луна образовалась за счет разрушения расплавленной и прошедшей полную дифференциацию (в отличие от холодной Земли) более массивной планеты, условно названной Протолуной (вероятнее всего, Протолуна была захвачена растущей Землей с соседней ближайшей орбиты протопланетного диска). 

Протолуна, в отличие от Земли, расплавилась в процессе своего образования. Если бы то же произошло с Землей, у нее сформировалось бы металлическое ядро и мощная кора, состоящая из анортозита — кристаллически-зернистой породы. В нее перешла бы большая часть радиоактивных элементов, тем самым лишив Землю источника внутреннего тепла. В результате этого Земля, подобно Луне, превратилась бы в тектонически мертвую планету. Кроме того, при плавлении Земли произошла бы быстрая и полная дегазация её недр с образованием плотной углекислотной атмосферы с давлением около 100 атмосфер, и, как следствие — необратимый парниковый эффект со средними температурами в 550–600 °C, отсутствием воды в жидкой фазе и, следовательно, жизни в нашем понимании (то есть, Земля была бы очень похожа на современную Венеру). 

Подобные предположения лишний раз доказывают, что даже небольшое отклонение в развитии Земли как планеты привело бы к тому, что органическая жизнь на ней могла бы и не появиться. 

Однако какими бы ни были гипотезы возникновения Луны, влияние её на земную жизнь неоспоримо. Взаимодействие же в системе Земля-Луна в ранние геологические эпохи было значительно более сильным. Сафронов в своих исследованиях даже высчитывает время тектономагматической активности Земли по возрасту лунных пород.

Восход Земли над лунной поверхностью. Снимок сделан с «Аполлона-17». Фото: NASA

Эволюция Солнечной системы продолжается; впрочем, продолжительность человеческой жизни несоизмерима с геологическими и тем более с астрономическими периодами, поэтому изменения в них мы почти не успеваем заметить. Однако именно последние десятилетия и даже годы помогли внести ясность в вопрос о происхождении Земли и её природе как астрономического тела. Большую роль тут сыграли новейшие технологические удачи, позволившие радикальным образом усовершенствовать методы наблюдательной астрономии. Так, планетологи NASA возлагают большие ожидания на космический аппарат Dawn, отправившийся в конце прошлого года к астероиду Весте и карликовой планете Церере из пояса астероидов. Считается, что их исследование поможет прояснить детали происхождения и других астрономических тел и даже «переписать учебники астрономии». Другой космический аппарат «Cassini» исследует в настоящее время Сатурн и его спутники.

Создается впечатление, что мы живем в очень интересное время: создаваемые веками гипотезы и теории возникновения планет и систем, подобных и не подобных Солнечной, с помощью современных телескопов и технологий наблюдений, могут быть оспорены или подтверждены — доказательно.

Вступайте в нашу группу Новости Кемеровской области в социальной сети Одноклассники, чтобы быть в курсе самых важных новостей.
Светлана Волошина
www.vokrugsveta.ru

всего: 1866 / сегодня: 1

Комментарии /0

Смайлы

После 22:00 комментарии принимаются только от зарегистрированных пользователей ИРП "Хутор".

Авторизация через Хутор:



В стране и мире